
Using OpenOffice for ETDs

Workshop, ETD 2003
Volker John

Computing Center, University of Hamburg

Today's Topics

> ETD Requirements
> Some Pre-requisites
> Preparing OpenOffice
> Using OpenOffice to create XML ETDs
> Strengths and Weaknesses
> Conclusion

Some Pre-Requisites for this Session

> Limited, general XML knowledge (will be provided during this session)
> A small familiarity with OpenOffice is beneficial (or at least working

knowledge of a GUI-Wordprocessor)
> For your own ETD design: XSLT knowledge

• will not be provided, but necessary topics for OpenOffice integration will be covered

Apply Structures using XML

A very brief XML Introduction

<?xml version=“1.0“ encoding=“UTF-8“?>
<!DOCTYPE product SYSTEM
"http://www.some.com/DTDs/product.dtd">
<product id=“prod0815“>

<name>candlelight</name>
<price>15.80</price>
<currency name=“EUR“/>
<mf>&manufacturer;</mf>

</product>

<?xml version=“1.0“ encoding=“UTF-8“?>
<!DOCTYPE product SYSTEM
"http://www.some.com/DTDs/product.dtd">
<product id=“prod0815“>

<name>candlelight</name>
<price>15.80</price>
<currency name=“EUR“/>
<mf>&manufacturer;</mf>

</product>

<!DOCTYPE product [
<!ELEMENT product (name, price, currency, mf)>
<!ATTLIST product id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT currency EMPTY>
<!ATTLIST currency name (EUR|DM) “DM“>
<!ELEMENT mf (#PCDATA)>
<!ENTITY manufacturer „Paraffin GmbH“>
]>

<!DOCTYPE product [
<!ELEMENT product (name, price, currency, mf)>
<!ATTLIST product id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT currency EMPTY>
<!ATTLIST currency name (EUR|DM) “DM“>
<!ELEMENT mf (#PCDATA)>
<!ENTITY manufacturer „Paraffin GmbH“>
]>

Basic Ideas

> Markup Languages
• Identifikation of Information Objects by means

of tags

> Machine-readable or understable for
persons?

> Abstract versus operational
semantics

> DTD - Document Type Definition
• Description of classes of information and those

hierarchical relationships allowed between
specific information objects

XML

> Document Type Definition (DTD)
• Specialized syntax to define the structure of XML documents
• Document Type Definitions (DTDs), XML Schema Languages
• Describe allowed set and structure of tags
• Programmatic checks of DTD/Schema compliance is possible

> XML Documents
• Markup

– <elementName> … </elementName>
– <elementName/>
– <elementName attribut=„Value“> … </elementName>

• Processing Instructions
– <? objectID=(xxx-yyy-zzz) ?>

• Comments
– <!-- this is a comment -->

• Entities
– &manufacturer;

• but… no layout nor presentation information!

Characteristics

> Tree Structures in XML
• Note: Tree structures are easily modeled in

object-oriented applications

> Platform-independent
• ASCII
• UNICODE

> Definition allows for validity checks
using machine „intelligence“

> Valid versus well-formed XML
documents text: Value = "fooBar"

node

node

node

node

node

node

document

Structured Documents

> Advantages
• Long-lived
• Easy re-use and re-purposing
• Automated processing
• Added efficiencies for large instances
• Single source, multiple targets

> Applications
• Technical Documentation
• Scientific Publishing
• Application Messaging, Data Exchange

OpenOffice Setup Woes

Preparing OpenOffice

> Java 1.4 JRE Installation
• Developers could also use JDK 1.4

> Download and install OpenOffice Beta
• Make sure to install mobile device filters

> Enable OpenOffice XML Docbook support
• See http://xml.openoffice.org/xmerge

> Possibly get XML Docbook
• Docbook support in OpenOffice defaults to http-based system identifier
• http://www.oasis-open.org/docbook/xml/

> Stylesheets for XML Docbook
• Obtained from SourceForge

Get & Install JRE 1.4

> Sun JRE Distribution
• http://java.sun.com/j2se/1.4.1/download.html

> Contains Crimson XML Parser & Xalan XSLT Processor
> Required for OpenOffice Installation & Execution of Java-code within

OpenOffice

OpenOffice Setup

> Download & Install OpenOffice
• make sure to get version 1.1 / currently in beta
• available from www.openoffice.org
• Make sure to install mobile device filters

Required for OpenOffice XML Docbook Support

> Document Editing on Small Devices – XMerge
• Aimed at small devices, can be used for general transformation to / from OpenOffice XML file

format

> You will also need a so-called “file format filter”
• Download from xml.openoffice.org/xmerge/docbook/
• Note: this requirement does no longer apply for OO1.1B2, available soon
• Side note: there is one available for OpenOffice Format to LaTeX, too

> Get a copy of the Docbook template
• Download from http://xml.openoffice.org/xmerge/downloads/docbook_template.sxw
• Install to <OpenOffice Installation>\share\template\<language>\[…] to have it listed as a

template
• Note: this requirement does no longer apply for OO1.1B2, available soon; the Docbook

template is part of the distribution

Setting up OpenOffice to create XML ETDs

> TypeDetection.xc
• Located at <OpenOffice Installation>\share\registry\data\org\openoffice\Office
• Open using Text Editor
• Search for <node oor:name="DocBook File" oor:op="replace">
• Before corresponding closing tag </node> insert

<prop oor:name="Installed" oor:type="xs:boolean">
<value>true</value>

</prop>

• Similarly for Flat XML (this is for the advanced part of this session)
• Note: this requirement does no longer apply for OO1.1B2, available soon

On the Setup Side,
We are done.

The Authoring Side

Using Docbook as intended Target

Creating your first Docbook Document

> Start OpenOffice by selecting
• Start Menu
• Programs
• OpenOffice[…] (depends on version)
• From Template

> Select DocBook Template
• When placed into <OpenOffice Installation>\share\template\english, it will appear as shown
• Open the Template

What is the trick behind OpenOffice‘s XML capabilities?

> OpenOffice Sections, Tables, and Styles are mapped to Docbook
sections and elements

> OpenOffice uses an XML file format internally
• This can easily be transformed to other XML dialects

> OpenOffice does not validate the document structure
• Saving lots of implementation efforts
• Possibly creating some problems with transformations of resulting documents to other

formats

> Only a limited set of Docbook elements currently supported
• See http://xml.openoffice.org/xmerge/docbook/DocBookTags.html

Sample Docbook Usage

> Once a document based on the Docbook template is created, it already
contains two sections:

• The document info section (this is where the document title goes)
• A first section (you can easily type ahead)

> Create the Document Title
• Will be mapped to article title
• Create other document matter

> Enter information into the 1st Section
• Simply type the section title, then hit return to enter the section’s body
• Note that Text Body style is mapped to Docbook’s para element

> Create more sections
• Choose Insert | Section from menu
• Each section requires a unique name (“New Section”)
• Set section title and enter body text
• Note: for nested sections, it proves useful to have the navigator open (F5)
• Note: to leave a section, hit ALT-RETURN

Extended Docbook Usage

> Tables
• Select Insert | Table vom Menu Bar
• Create a table title by adding a caption (right click on table, then choose caption)

> Character styles
• From Style List Dialog, choose character styles
• Mark selection, then choose appropriate character style (e.g., Emphasis, Filename,

Command, ...)

> Images
• Be sure to check the Link checkbox the import dialog, otherwise, the fileref attribute of the

inlinegraphic element will remain empty

> Formulas
• Currently not supported

The Customization View

Creating other XML Documents

Using OpenOffice to create XML ETDs

> Note: the following applies only to OpenOffice 1.1 Beta 2 (and newer)
• Additional information: XML filters are installed as part of the full installation (or by custom

choice)

> The previous lessons mostly dealt with creating Docbook XML
documents, to give some insights on handling

> The next steps will show you how to create XML structured according to
your own DTD from within OpenOffice

Some .SXW Knowledge

> .SXW is the file extension that OpenOffice Writer documents use
> These files are .ZIP archives

• Try opening them with WinZIP (or similar) for a start!

• Content.xml is our point of interest

What you need is...

> ...an XSLT Stylesheet
• XSLT is ‘eXtensible Stylesheet Language Transformations’

– See http://www.w3.org/Style/XSL/ for further details

• XSLT is a language described as an XML DTD
– Thus, all XSLT documents are XML documents aiming to describe how an XML document can be

tranformed into another
– The above is what makes XSLT so useful in conjunction with OpenOffice

• XSLT will be used to map content.xml styles to your own ETD DTD elements
• Note: OpenOffice allows roundtripping – thus, you will eventually need two stylesheets; one

for export, the other for import

> ...and knowledge about the structure of OpenOffice content.xml files
• You do not need to know about programming OpenOffice using C++ and / or Java!

> ...to describe your own XML output format

User Quick Guide

> Some easy steps
• Study Content XML Structure
• Create and test stylesheet (at least the one required for export) for your ETD
• Create new filter using OpenOffice dialog

– Located under Tools | XML Filter Settings...

• Choose File | Save As...
• Done

> Notes
• You also require your own ETD DTD to supply to OpenOffice
• Probably the most efforts will go into the creation of the stylesheet

User Extensive Guide

> XML filters in OpenOffice use the XMerge framework's XSLT
processing functionality

• New transformations can be created using the steps provided before
• Exaclty, it is required to create a .JAR (Java Archive) file with the following contents:

– a set of two XSLT style-sheets, one for transforming from your ETD to OpenOffice and one for
transforming from OpenOffice to your ETD.

– A file called converter.xml file in the META-INF directory that contains information describing the
supported mime-types, the style -sheet names and the XMerge plugin that your ETD transformation
uses
<converters>
<converter type="staroffice/sxw" version="1.0">
<converter-display-name>
[...]
<converter-class-impl>
org.openoffice.xmerge.converter.xml.xslt.PluginFactoryImpl
</converter-class-impl>
[...]
</converter>
</converters>

• All of the above information can be managed either using the OpenOffice menu items
(previous slide) or manually be authoring the appropriate files

Something to Take Home

Strengths and Weaknesses

> Pros
• Freely available
• Standardized document type with long history ensures high interoperability and excellent

potential for preservation
• Commercial “offspring” Star Office distributed freely among schools and other educational

institutions
• Works among almost all platforms

> Cons
• Docbook support still limited
• Docbook- related styles are not clearly identified (relation is not self -explaining)
• Each other DTD requires additional coding
• OpenOffice does not restrict users from breaking the template

Food for Thoughts

> Rant
• Why should I use OpenOffice/XML at all? Going from OpenOffice to Word/HTML/PDF works

fine for me!

> Suggested Reading
• Save as XDiML (DissertationMarkupLanguage), Writing and Converting digital Theses and

Dissertations using OpenOffice
http://marketing.openoffice.org/conference/presentations-pdf/thu1615/XDIML.pdf

Questions & Answers

